Skip to main content

The Quest for the Superlens

Built from "metamaterials" with bizarre, controversial optical properties, a superlens could produce images that include details finer than the wavelength of light that is used


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Almost 40 years ago Russian scientist Victor Veselago had an idea for a material that could turn the world of optics on its head. It could make light waves appear to flow backward and behave in many other counterintuitive ways. A totally new kind of lens made of the material would have almost magical attributes that would let it outperform any previously known. The catch: the material had to have a negative index of refraction ("refraction" describes how much a wave will change direction as it enters or leaves the material). All known materials had a positive value. After years of searching, Veselago failed to find anything having the electromagnetic properties he sought, and his conjecture faded into obscurity.

A startling advance recently resurrected Veselago's notion. In most materials, the electromagnetic properties arise directly from the characteristics of constituent atoms and molecules. Because these constituents have a limited range of characteristics, the millions of materials that we know of display only a limited palette of electromagnetic properties. But in the mid-1990s one of us (Pendry), in collaboration with scientists at Marconi Materials Technology in England, realized that a "material" does not have to be a slab of one substance. Rather it could gain its electromagnetic properties from tiny structures, which collectively create effects that are otherwise impossible.